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1. INTRODUCTION
In recent years, dense packings of two- and three-dimensional

objects have been studied intensely in the context of computational Physical properties of composite materials have been
physics and material sciences. For example, computer simulations studied recently by using discrete computational models
of disordered solids usually employ a two-dimensional model which related to packings of equal-sized disks in the plane. The
is based on hexagonal networks of elastic and rigid bonds or ar-

approach is closely related to theoretical and numericalrangements of mixed soft and hard disks, respectively. Both types
studies on two-dimensional random networks of rigid andof bonds/disks are distributed randomly. Large systems of equations

have to be solved at any simulation step for the calculation of local nonrigid bonds. The basic methodology of the work dealing
displacements or particle velocities. The simulations start from equi- with random rigid–nonrigid networks comes from percola-
distant nodes of the hexagonal network or centers of disks, respec- tion theory [33]. An important parameter in percolation
tively, which, in general, may not be in an equilibrium state. We

theory is the percolation threshold pc, defining whether orsuggest an extension of the model where first a near-equilibrium
not arbitrarily large clusters affected by percolation maypacking of randomly distributed bonds/disks is calculated. Then,

we can compute the displacement caused by external forces from appear. Obviously, pc depends on the underlying network
this near-equilibrium initial packing of the elementary units. To this that represents the connection of elementary cells of the
end, we propose a stochastic simulation of the external impact by medium. In some cases, pc can be calculated exactly, e.g.,
incorporating the computation of near-equilibrium states as well as

for hexagonal interconnections, where pc 5 1 2 2 ? sinspecific boundary conditions. Our methodology is based on a two-
(f/18). Networks representing elastic, granular materialsstep approach consisting of a preprocessing stage, where physical

properties of different types of particles are analyzed by numerical are studied in particular for a fraction of rigid bonds that
methods, and a second stage of stochastic (annealing-based) simu- is close to the corresponding value of pc. In a series of
lations which exploits approximate formulas for local interactions. papers (see, e.g., [4–7, 10–13, 17, 25, 29, 31, 37]), material
We have implemented two types of cooling schedules with an ex-

parameters like Poisson’s ratio and related elastic modulipected serial run-time n ? ln2 n and n3/2 ? ln5/2 n, respectively, to reach
are analyzed theoretically and by numerical simulationsnear-equilibrium states for n disks. The algorithms were parallelized

on a 20-processor machine, and for a sufficiently large number for networks of randomly distributed rigid and nonrigid
of objects the speedup is close to the number of processors. For bonds, where the fraction p of rigid bonds satisfies p R pc
example, the parallel run-time for computing near-equilibrium for p , pc and p . pc . In most cases, the underlying
states is about 2As h for 449 disks, using the first cooling schedule,

network structure is hexagonal-like, and elementary bond-and about 37 h for 1068 disks, using the second cooling schedule.
stretching and angle-bending force constants are assignedWe performed a number of computer simulations calculating the

average displacement in near-equilibrium states from regular, equi- to the particular links. These constants differ significantly
distant initial packings. The underlying physical model for our imple- for rigid and nonrigid bonds, respectively. However, the
mentations is very similar to the model used for the analysis of distances between the nodes are assumed to be the same
granular composites which involves arrangements of mixed soft

at the initial stage, despite the different values of assignedand hard disks. However, our emphasis is on the computational
bond-stretching forces. Usually, the network has a variableaspects rather than on particular systems of physical interactions,

because substituting a system of physical interactions by another length Lx and an elementary constant height Ly , and the
one does not affect significantly the run-time or the overall external forces applied to nodes at one side are related
approach. Q 1997 Academic Press to the relative displacement of network nodes by linear

equations, according to the (hexagonal) network structure.
In some applications, the rectangular Lx 3 Ly structure is
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of displacements to applied forces from the boundary (e.g., From the viewpoint of computational complexity, an
exponential time complexity can be expected for the calcu-perpendicular force, shear force) defines the corresponding

elastic modulus. Due to the restricted height, the computa- lation of displacements from external forces. To see why,
we can look at the classical problem of packing and placingtion time is mainly defined by the length Lx.

Similar force/displacement relationships are considered 2D objects, studied intensely in the past, for example, in
the context of the 2D bin-packing problem [16, 18] andfor arrangements of rigid and flexible disks [5–7, 9, 20, 22]

and for dense packings of spheres [38, 39]. In [20], for the placement of circuits on VLSI chips [30, 32, 36]. In
these cases the objects are all assumed to be rigid, yetexample, the packing of disks restrained by frictionless

walls on three sides is considered, where a uniform velocity these problems have been proved to be computationally
hard (NP-complete problems). Now, in the present case,boundary condition is applied on the fourth side. If vl

denotes the velocity of unit ul , the forces associated with we need to compute equilibrium states for packings of
mixed rigid and flexible objects, which will add a newa particular disk uj are calculated from a contact scheme

which is based on the forces Fj (ui ) :5 e ? ((vj 2 vi)/R dimension to the computational task, because changing
the position of a single disk by only a small value may(ui, uj ) 2 s); throughout this paper, ‘‘:5’’ means ‘‘is defined

as.’’ Here, e is the contact viscosity relating the force and cause changes in the positions of all other disks. As a
consequence, we have to consider near-equilibrium statesstrain rate along the contact normal; R(ui , uj) is the dis-

tance between the centers of ui and uj ; and s denotes the as approximate solutions to the original problem.
In deterministic approaches, the near-equilibrium statessintering rate. The local relations are unified to a system

of equilibrium equations which is solved with respect to and, therefore, the relative displacements, are calculated
by an iterative process, where at any single step polynomialthe unknown velocities, e.g., for up to n 5 900 units. These

are then used to update the coordinates of the packing. time matrix operations (computing solutions for systems
of linear equations) are applied. These polynomial timeAs in the case of hexagonal networks, the initial packing

is virtually assumed to be in an equilibrium packing of operations are repeated a large number of steps until some
stopping criterion is satisfied, i.e., an approximate solutionequidistant disks. This assumption is justified if relatively

rigid components are considered for both types of disks has been calculated. For example, in [5] the iterations are
continued until the changes of calculated relative displace-and displacements are mainly caused by the external im-

pact. But in [20], for example, the ratio of contact viscosities ments are smaller than 1025.
Our methodology is based on a two-step approach con-of the hard and soft particles is 1012, and in [17] the ratio

of rigid and nonrigid bond-stretching force constants is sisting of a preprocessing stage, where deformation/force
relationships of particles are analyzed separately for each107. In the case of such extreme differences between the

viscosities in the equilibrium state one can expect signifi- homogeneous material of particles by proven numerical
methods. The application of numerical methods is basedcant displacements of particle positions from the regular,

equidistant arrangement. on known material coefficients at the particle level. At
the second stage, (near-)equilibrium configurations of theOur approach aims at the computation of equilibrium

packing for a given number of disks within some rigid, in entire system of n particles are computed by stochastic
simulations, in order to obtain information about physicalgeneral irregular-shaped, boundary. The disks are of equal

size but divided into two classes defined by the coefficient properties of the composite material. At this stage, approx-
imations of local interactions of particles are employedof elasticity. It is assumed that these coefficients differ

significantly, and therefore, we distinguish between rigid which have been derived at the first stage. The technique
of simulated annealing, in particular, seems to be an appro-and flexible disks. The elements of both classes are distrib-

uted randomly on the initial placement. Starting from a priate stochastic method for computing near-equilibrium
states of dense packings, since annealing-based optimiza-regular, hexagonal placement, the average displacement

can be calculated after achieving a near-equilibrium pack- tion algorithms originated from Metropolis’ method [26]
of computing equations of state for substances consistinging of disks. For example, in the case of n 5 1068 mixed

rigid and flexible disks the average displacement in a near- of interacting individual molecules. In [39] (see Section 2.4
there), the computation of equlibrium configurations ofequilibrium state compared to the equidistant initial place-

ment is about 2% of the disk radius for a ratio 105 of force nontouching spheres is performed at the initial stage of
calculating densifications of spheres. The procedure isconstants and very small initial deformations. Further-

more, the presence of an external impact will be modeled based on Metropolis’ method; however, it is not mentioned
explicitly whether the running time of the preprocessingby initial intersections of disks with the boundary, where

the force associated with the intersections is treated in a step was included in the run-time analysis provided in
[39]. But in Section 3 of [39], the need for fast algorithmsspecial way, different from contacts between disks. The

displacements caused by the external impact are calculated producing initial equilibrium states is emphasized (see the
reference to [21] there).from the near-equlibrium packing of disks.
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In general, simulated annealing algorithms are relatively models from the literature we already referred to. The
slow, but in our specific case we can employ a special type deformation/force relationship is derived from numerical
of objective function and take advantage of the structure experiments which are based on the finite element method
of the underlying configuration space, namely, although and performed on several materials. Since an approximate
the position and shape of a single object has an impact formula is used for the physical modeling, instead of the
on all other elements of the system, to change from one time-consuming finite element method, the computation of
configuration to another involves only local computations. local forces resulting from deformations can be performed
This is an important difference from other applications of relatively fast, i.e., in constant time related to the grid
simulated annealing algorithms, e.g., in the area of VLSI size, the material constants, and the diameter of units, but
design (see [30, 32, 36]). independent of the number of placed units. Throughout

Based on the general framework of simulated annealing, the paper we will emphasize the complexity aspects of
we have designed two specifically tailored heuristic proce- computing equlibrium states of mixed rigid and flexible
dures computing equilibrium placements of mixed rigid objects, demonstrated on the particular physical model
and flexible objects. For the expected run-time of these introduced in Section 2. The computation of equilibrium
heuristics the upper bounds n ? ln2 n ? x and n3/2 ? states is explicitly discussed in [5, 6, 31, 39]. The underlying
ln5/2 n ? x, respectively, can be proved, where x denotes algorithm from [31, 39] is Metropolis’ method. In [5, 6],
the average value of the expected ratio of all trials to the near-equilibrium states are calculated from linear systems
number of accepted moves, taken over all values of the of equations, solved on Cray X-MP/Y-MP machines. In
cooling parameter, and n is the number of placed objects Section 3, we describe the general structure of simulated
(an outline of the proofs will be given in Section 4). The annealing algorithms, and in Section 4, our stochastic an-
objective function represents the average value of local nealing procedures, calculating equilibrium packings of
forces ‘‘trying to move’’ the particular units. A randomly mixed rigid and flexible objects, are explained in more
chosen disk is moved a single grid step (which is signifi- detail. Experimental results are presented in Section 5,
cantly smaller than the diameter of disks) in a randomly including the outcome of parallel implementations on a
chosen direction. All other disks remain unchanged. The 20-processor Sun SPARC2000 machine. The implementa-
changes of local forces (velocities) have to be calculated tions are running under OS Solaris 2.4 for both the single-
only for the moved unit and the neighbouring units that processor and parallel modes. The computational experi-
are affected by the move (as in other papers on simulations ments were performed for both types of cooling schedules
of disordered materials, see [5, 6, 17, 20]). Therefore, the and for up to 1500 disks, where the fraction of rigid disks
‘‘updating’’ of physical values of a single unit after a single is close to the percolation threshold 1 2 2 ? sin(f /18).
computational step has to be performed only with respect
to a constant, local neighborhood, which is independent

2. PHYSICAL MODELof the variable (and large) number n of all units of the
system. In other words, the overall run-time depends only

2.1. Basic Notations
by a constant factor on the particular system of local physi-
cal interactions. We obtain a further speedup of the compu- We consider the placement of flexible disks within a

rigid rectangular boundary. The disks are of equal sizetation, i.e., a decrease of the constant factor, by introducing
an approximate formula which represents the deformation/ with diameter d and built from at most two different types

of materials. By L and H we denote the length and theforce relationship between neighboring disks. The approxi-
mate formula takes into account different types of contacts, height of the boundary, respectively. For the L 3 H place-

ment region a subdivision by a grid of step size w is per-e.g., contacts between flexible and rigid units. After the
new value of the objective function has been calculated, a formed in both directions, and it is assumed that L and H

are both multiples of the elementary grid unit w. We denoterandom decision rule related to the change of the objective
function is applied, and the outcome defines whether or h :5 hw :5 H/w and l :5 lw :5 L/w. The center Z of

a single unit can be placed only into one of the K :5not the move will be accepted and indeed performed. Since
the change of the objective function can be calculated very (h 2 1) ? (l 2 1) grid nodes, excluding the nodes on the

boundary. It is assumed that the lower left corner of theefficiently from the previous value, independent of the
number of objects participating in the packing problem, rectangular boundary is the origin of the coordinate system

which is defined by the unit measured in w.the algorithms run relatively fast and depend mainly on
the number of ‘‘cooling steps’’ and the length of Markov If two disks intersect, this intersection is interpreted for

both disks as a deformation of depth D. The value D is thechains at a fixed ‘‘temperature.’’
In Section 2, we introduce our physical model, including distance measured on the line connecting the centers from

the intersecting point on the original border (the arc) tothe derivation of an approximate deformation/force rela-
tionship. Furthermore, we will discuss the relation to other the chord halving the distance between the centers (see
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disk u. This force is acting on the neighboring disk as well
as on the disk u itself. As a result, the vector sum of all
acting forces is equal to zero, and for a particular disk u and
a particular deformation D we have to take into account the
force F(u9, D) from the neighboring unit u9 and the force
F(u, D), which are both oriented into the same direction.
Therefore, in the case of only a single material of objects,
the forces are easily calculated by doubling the force associ-
ated with a single deformation. For placements of mixed
rigid and flexible objects, one has to calculate each force
individually for the particular material. In Fig. 2, e.g., F1

represents the sum of the forces which are calculated for
both materials participating in the corresponding deforma-

FIGURE 1 tion. Thus, if a disk u intersects with several other disks
or parts of the boundary, one has to compute the forces
Fi 5 F(u, Di ) 1 F(ui , Di) for each Di . Then, the resultant
force Fres(u) 5 oi Fi is calculated from the vector sum,Fig. 1). The length of the chord between the two points
where the origin of Fres(u) is supposed to be the center ofP1 and P2, where the borders cross, is denoted by s and
the disk (see Fig. 2). From the viewpoint of a particularcalled the deformation length. The relationship between
disk, the resultant force Fres(u) tries to move the disk uthe deformation depth and the deformation length is
into its direction. The particular forces F(u, D) are calcu-expressed by the formula
lated from an approximate force/deformation relationship,
which will be derived in Section 2.2. If for all diskss 5 2 ? ÏD ? d 2 D2.
Fres(u) , « for a small «, the packing is said to represent
a (near-)equilibrium state.The angle defined by P1, Z1, and P2 is called the deforma-

Similar relationships are used, e.g., in [5, 6, 20] for the
tion angle and can be calculated by

description of local interactions. In [5–7], vector transport
and failure properties of disordered materials are studied.
The underlying model is a percolation network in whicha 5 2 ? arcsin S2 ? !D

d
2 SD

dD2D.
each bond represents an elastic element, or a spring, with
an elastic constant h which can take on values from a

By R 5 R(Z1, Z2) we denote the distance between the
centers of disks. In our model we assume that the maximum
deformations of a disk are bounded by the limit of elasticity
of the material. Let Dmax denote this upper bound for
deformations, which is a constant depending on the mate-
rial and the size of disks. For any placements, one has to
ensure that the limit of elasticity is not violated, i.e., the
centers of the disks have to be separated by a distance of
at least R $ d 2 2 ? Dmax . Given a placement P, one
can calculate for any unit u the maximum deformation
D(u) resulting from ‘‘intersections’’ with other disks. By
Dmax :5 maxu D(u) we denote the maximum deformation
that a single unit is exposed in P. Hence, in a physical
feasible placement P we have Dmax # Dmax .

With any deformation D of the disk u we associate a
force F(u, D), calculated from the ‘‘intersection’’ of disks :

F(u, D) :5
1
s

? E
s(D)

f dx,

where f(x) is the force at point x of the chord P1 P2 (see
Fig. 1), trying to recover the original shape of u. The force

FIGURE 2F(u, D) is associated with a single deformation D of a given
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probability distribution (in most cases h takes the value a wise. Future work will be directed on further extensions
of the model, where, e.g., various (concave) shapes of theand b with probability p and 1 2 p, respectively). The

basic relation is given by the elastic energy E of a percola- boundary will be considered.
tion network which is defined as

2.2. Deformations of Elastic Materials

In the literature on material sciences, in particular on
E 5

1
2

? O
kijl

[(ui 2 uj ) ? Fij ]2 ? hij . flexible materials (see, e.g., [35]), the relationship between
deformations and forces is expressed as a closed-form for-
mula only for small values of deformations, i.e., small dis-

Here, ui denotes the displacement of the ith node, Fij is placements of points relative to adjacent points. Therefore,
the force acting between nodes, and hij stands for the corre- the calculation of the force related to a given deformation
sponding elastic constant. To calculate elastic properties, and vice versa is performed for infinitesimal elements of

an object. Large scale deformations have to be calculatedthe elastic energy E has to be minimized with respect to
by time-consuming numerical methods. In our case of gran-ui ; i.e., ­E/­ui 5 0. This condition, written for any node
ular composites, we have to deal with relatively large parti-i, leads to a system of linear equations. The boundary
cles, where significant deformations cannot be excluded.conditions depend on the modulus that has to be calcu-
For example, the size of objects considered in [4] for experi-lated. From a numerical solution of the system new coordi-
mental studies on elastic percolation networks representsnates can be calculated, and the procedure is repeated k
the order of magnitude of 1 mm (however, this is supposedsteps until uu(k11)

i 2 u(k)
i u/uu(k)

i u , « is satisfied for any node
to be an upper bound), and the forces associated withi, where, e.g., « 5 1025. The computations presented in
displacements are ranging from 0.2 N to 10 N. Thus, we try[5, 6] were performed on Cray X-MP/Y-MP machines.
to derive an approximate force/deformation relationshipThe force/velocity relationship Fj (ui ) :5 e ? (vj 2 vi )/
which avoids time-expensive numerical calculations.R(ui , uj ) 2 s), which is employed in [20] within the truss

Commonly, the notion force is used for an external im-model, was already mentioned in Section 1. The forces
pact related to an object, while the notion stress refers toFj (ui) are used only for the formulation of equilibrium
internal forces acting on infinitesimal elements of an object.conditions; i.e., the essential values are the ‘‘velocities’’ vi .
Thus, given an infinitesimal cubic element whose edgesIn fact, this formula takes into account an increase of the
are parallel to the coordinate axes x, y, and z, we considerforce depending on the deformation, which is expressed
the stress vectors Fx , Fy , and Fz acting on the cube faces.by the inverse value R21(ui , uj) of the distance. Properties
For example, the stress Fx is related to the yz plane. Inof the material (contact viscosity) are included by the coef-
our problem setting, these stress vectors are interpretedficient e. The parameter 2s is related to the specific prob-
to be the result of deformations; i.e., these forces try tolem of sintering rates in granular composites; in particular,
re-establish the original point positions of the cube. Thethe sintering problem is converted into a problem for the
stress vectors are resolved into their components, e.g., Fxdeformation of disks to certain forces. The equilibrium
into sxx , sxy , and sxz . The components of the stress vectorequations for all particles in the packing are assembled
(Fx , Fy , Fz) are considered in their relation to the relativeinto a linear system which is solved for the unknown veloci-
displacement of points within the cubic element. There-ties vi. These are then used to update the coordinates of
fore, given a displacement of a point (x, y, z) to the positionthe packing; i.e., the approach is similar to the method
(x 1 u, y 1 v, z 1 w), we additionally consider the relativedescribed in [5, 6] and, e.g., in [17]. Basically, the underlying
displacement of the two adjacent points (x, y, z) and

force/deformation relationship employed in this model is (x 1 dx, y 1 dy, z 1 dz). The partial derivatives
proportional to e/R(ui , uj ).

­u/­x , ­u/­y , ..., etc. represent the strength of the relative
The calculation of elastic moduli is based on simulations displacement along the x-axis, y-axis, and z-axis, respec-

of an external impact on the elastic material. In the deter- tively. These partial derivatives are called the physical
ministic approach, as performed in [5, 6, 17, 20], external strain defined by the relative displacement of points. For
forces are taken into account by the linear system of equi- example, exx :5 ­u/­x is the physical strain along the x axis
librium equations. In our stochastic approach, we first cal- (the index xx results from the displacement u along the
culate a near-equilibrium packing, starting from random or x-axis and the partial derivative in the x direction). In the
regular initial placements. Then, the existence of external theory of elasticity, the following formula is used for the
forces, say, at the upper boundary, is modeled by lowering relationship between stress and strain, where we consider
the upper boundary, i.e., the size of the packing area is only the case of exx along the x-axis and the components
decreased in one direction. Thus, only normal forces, per- of stress sxx , syy , and szz :
pendicular to the boundary, can be simulated. Further-
more, the depth of intersections is restricted by the radius exx 5

1
E

? sxx 2
n
E

? (syy 1 szz ). (1)
of disks. Larger external forces have to be simulated step-
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stands for the decrease of deformation that is caused by
the internal resistance of the material, e.g., caused by the
deformation of the boundary in the opposite direction (see
Fig. 3). In the case of more than a single deformation,
the force associated with a particular deformation will be
calculated in the same way as given in formula (3).

The function w (a) should ensure uFu 5 0 for D 5 0. For
simplicity and because of C1 , we require w(0) 5 1. For-
mally, we take into account extremely large deformations,
i.e., D is upper bounded by d/2, and for very large D the
force should increase rapidly. Therefore, additionally,

w(a1) . w(a2) for a1 , a2 # f

FIGURE 3
is required. For the second function we set c(0) 5 0, i.e.,
the internal resistance is equal to zero if no deformation
occurs. With an increasing deformation, the internal resis-The values syy and szz are derived from the stress acting
tance also increases:on the zx plane and xy plane, respectively. The constant

E denotes Young’s modulus and n is the notation for Pois-
son’s ratio. Similar relationships are used in the theory of c(a1) , c(a2), where a1 , a2 # f. (4)
elasticity for the three quantities of shear strain, e.g.,
exz 5 (1/G) sxz, where G 5 E/2 ? (1 1 n) is the torsional Numerical experiments for deformation angles up to
or shear modulus. f/2 have shown that w(a) can be approximated by

Since we consider the two-dimensional case, we can set 1/(1 1 j(a)), where j(a) is a slowly growing function, e.g.,
szz 5 0, and (1) becomes j(a) 5 ln(1 1 a/2) or j(a) 5 sin(a/2). However, in this

case one can use the expansion
exx 5

1
E

? sxx 2
n
E

? syy . (2)

1
1 1 j(a)

5 1 1 Oy
n51

(21)n ? j n(a)
As the partial derivative ­u/­x, the value exx measures
changing lengths, while sxx and syy are components of
stress vectors. That means, (2) describes a relation between and take only the first terms of this representation.
relative displacements and related forces. Based on (2), Applying this approximation, (3) becomes
one could suggest the formula D 5 (1/E) F 2 (n/E) F 9 to
be taken as the deformation/force relationship in the case
of a single, relatively large deformation. However, as can D 5 C1 ? uFu ? S1 1 Oy

n51
(21)n ? j n(a)D2 C2 ? uFu ? c(a)

be seen from numerical experiments, this formula does
not match the force values F computed for a number of

P C1 ? uFu ? (1 2 j(a)) 2 C2 ? uFu ? c(a)
different deformations D. The experiments were per-

5 C1 ? uFu 2 (C1 ? j(a) 1 C2 ? c(a)) ? uFu.formed on several flexible materials by using finite element
methods with relatively dense meshes (see Section 2.3).
Following the general structure of (2), the search range for But this relation means that a priori the search range can
an approximate formula, expressing the relation between a be restricted to
single deformation and the resulting force, was restricted
to the type

D 5 C1 ? uFu 2 C2 ? uFu ? z(a),

D 5 C1 ? uFu ? w(a) 2 C2 ? uFu ? c(a), (3)
where z(a) :5 (C1/C2 ) j(a) 1 c(a) satisfies (4), because
j(a) and c(a) are increasing functions. Approximationswhere C1, C2 are constants, a denotes the deformation

angle, and F is the force, acting through the center of the for z(a) and the constants C1 and C2 are derived from
numerical experiments (see Section 2.3).deformation (see Fig. 3). The first term in this formula

represents the deformation that would appear ‘‘without As a result of the data analysis, the following formula is
assumed to reflect approximately the relationship betweenresistance’’ from all parts of the object, the second term
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the deformation D and the resulting force F for a relatively
large range of deformations:

D 5 C1 ? uFu 2 C2 ? uFu ? Sa
2

1 sin
a
2D . (5)

The ratio a/2 was chosen in order to ensure monotonicity
also for large values a # f, and we assume that C1 2
C2 ? (f /2 1 1) . 0 is satisfied. The monotonicity is desirable
in order to enhance the performance of our stochastic
algorithms: In simulations of disordered materials, usually
a number of simulations are performed for randomly gen-
erated (regular) initial configurations (distributions of

FIGURE 4rigid/nonrigid disks or bonds). In the case of the disk
model, the relative positions of rigid/nonrigid disks in ran-
domly generated configurations might be far from the posi-
tions in equilibrium configurations (i.e., it could be neces- That the force in (5) increases monotonically with a,
sary that particular disks ‘‘walk’’ around relative large i.e., that the first derivative is positive on a [ (0, f), follows
distances, comparable to the disk diameter). If only very from our construction of formula (5). By straightforward
small deformations are allowed, randomly generated con- calculations one can show that the second derivative d 2F /
figurations which are ‘‘close’’ to equilibrium configurations da2 is also positive for a [ (0, f). This is important for
(i.e., where ‘‘long walks’’ are not necessary) might appear our simulated annealing procedures (see Section 4.1).
only in a long chain of random generations. The other way We use the notation rigid disk for materials where C1
is to allow large deformations (which are physically not and C2 from formula (7) are small constants (!1025 mm/N;
feasible, but appear only in initial and intermediate con- see Section 2.3).
figurations, and usually disappear in the final result close Thus, our approach consists of the following steps: First,
to an equilibrium state), which make it ‘‘easy to walk’’ disks, i.e., particles of the same homogeneous material, are
relative long distances for particular disks in order to find analyzed by numerical methods, based on known material
equilibrium configurations. Therefore, in this case a single constants like Poisson’s ratio and Young’s modulus. From
random configuration covers a (large) number of ran- this analysis, the necessary parameters of the approximate
dom trials. formula (7) are derived, which is designed to describe the

If D is replaced by (d/2) (1 2 cos(a/2)), one obtains deformation/force relationship at the particle level. Then,
at the second step, elastic properties of composite packings
are studied by stochastic simulations, where the approxi-uFu 5

d
2

?
1 2 cos(a/2)

C1 2 C2 ? (a/2 1 sin(a/2))
. (6)

mate formula (7) is employed for the calculation of resul-
tant forces assigned to particular disks.

The force F represents F(u, D) defined in Section 2.1. This
force is acting at the center of the deformation, where 2.3. Numerical Experiments on Elastic Materials
the deformation depth is equal to D. If a single unit is

The relationship between deformations and forces was‘‘intersecting’’ with several other units, the intersection
analyzed by a number of numerical experiments, per-line, in general, is not equal to s(D) (see Fig. 4). But F
formed on different flexible materials and sizes of particles,was taken to represent the forces f(x) from the entire
respectively. The experiments were based on the finitedeformation length s(D). In order to take into account only
element method, implemented within the software pack-the actual force associated with the length l(u, v) of the
age CADDS 5 that was used for the modeling of flexibleintersection line between two units (see Fig. 4), the follow-
disks. The diameter of disks was between 1 mm and 10ing modification of formula (6) is introduced: The force F
mm (see [4]), the thickness by one order of magnitudeis divided by the deformation length s(D) and then
smaller than the diameter. The material constants, i.e.,multiplied by l(u, v):
Poisson’s ratio and Young’s modulus were taken from
[8, 35]. In general, the material constants are ranging within

uFnormu 5
l(u, v)

C1 2 C2 ? (a/2 1 sin(a/2))
?

D

s(D)
. (7) some limits, and the average value was taken as the in-

put value.
Three different angles were considered in detail: a1 5Since we employ in the following only (7), we will use, in

general, the notation F instead of Fnorm . f/4, a2 5 f/6, and a3 5 f/12. In most cases, the mesh of
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TABLE I Simulated annealing algorithms are acting within a con-
figuration space Cn in accordance with a certain neighbour-

Density C1 C2 hood structure N, where the particular steps are controlled
Material g/cm3 mm/N mm/N

by the value of an objective function Z. Now we are going
to introduce these notions for placements of mixed flexibleAcrylics 1.18 1.14 3 1024 4.47 3 1025

Low-density and rigid objects.
polyethylenes 0.91 1.21 3 1022 4.69 3 1023

Medium density 3.1. Configuration Space and Neighbourhood Relation
polyethylenes 0.93 7.54 3 1023 3.20 3 1023

High-density We suppose that the center of a single disk can be placed
polyethylenes 0.95 2.46 3 1023 8.56 3 1024

into K grid nodes, excluding the nodes on the boundary.
Thermoplastic We require that different disks be placed into differentelastomer

grid nodes. The corresponding set of placements is denotedpolyurethane 1.10 2.07 3 1023 7.42 3 1024

by Cn and is called the configuration space. The size uCnu of
the configuration space can be upper bounded as follows,
where we take into account the maximum allowable defor-
mation Dmax and the lower bound

nodes for the finite element method was defined by 53
nodes on the circular boundary between P1 and P2 for a1

5 f /4, and 11 nodes on P1Z1 and P2Z1 (see Fig. 1). Triangu- Amin (Dmax) $
f
4

? (d 2 2 ? 2 Dmax )2 (8)
lar-shaped finite elements were used for the analysis. The
calculation of the unknowns C1, C2 was performed by using

for the area of a deformed disk. For n disks, there are atthe three combinations of data: [f /4, f /6], [f /4, f /12], and
most K possibilities to place the first unit. The ith disc can[f /6, f /12]. The numerical results are from stable regions
be placed into at most K 2 (i 2 1) ? Amin/w2 grid nodes.of experimental data, obtained by further experiments with
Hence, the upper bounddifferent (in particular larger) numbers of nodes. For small

angles it was possible to perform experiments with meshes
of high density. The ratio r of deformation and force was uCnu , Kn ? p

n

i51

(1 2 (i 2 1) ? a) (9)
growing with the density of meshes, e.g., for the deforma-
tion angle a 5 f /12 from r 5 0.00169 mm/N (19 nodes
between P1 and P2) up to r 5 0.00187 mm/N (27 nodes). , Kn ? S1 2

n 2 1
2

? aDn

, (10)
But this is considered to be a small difference.

The values of the constants C1 and C2 given in Table I
satisfy with one exception (medium density polyethylenes) is valid, where
the condition C1 2 C2 ? (f /2 1 1) . 0 (see the conditions
required for (7)). But in all five cases the absolute value
uC1 2 C2 ? (f/2 1 1)u is significantly smaller, compared to a :5

1
K

? KAmin

w2 H.
C2. The deviation for different sizes is up to 14%, the
average deviation is 8%. Thus, if the size of the particles

Furthermore, we suppose n ? (f/4) ? d2 $ h ? l ? w2/c, whereis known, one can define the constants C1 and C2 more
c is a constant defined by the maximum number of disksspecifically. We will apply the values from Table I in Sec-
that can be placed without deformations (the constant istion 5 to the sizes of particles ranging between 0.1 mm and
approximately equal to 1.103). If the inequality is violated,1 mm.
the computation of equilibrium states becomes trivial, be-
cause the n units can be moved rapidly into a hexagonal-3. SIMULATED ANNEALING ALGORITHMS
like position where no forces are acting on the unit. From
this condition we obtain the relation:Simulated annealing was introduced in [23] as a new

approach to calculate approximate solutions of combinato-
rial optimization problems, where the underlying frame- n . K ?

4 ? w2

c ? f ? d2 . (11)
work was based on Metropolis’ method [26] of computing
equilibrium states for substances consisting of interacting
molecules. Detailed information about this method and Together with (10), the upper bound (11) illustrates the

exponential relation between uCnu and the number of unitsapplications in different areas can be found in [1, 2, 19, 23,
24, 27, 28, 32, 34, 36]. We will follow mainly the notations n. Furthermore, (10) is of special interest for the estimation

of the running time (see Section 4.3).provided in [2, 24].
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The transitions between placements are defined as a We introduce the following objective function:
subset N of the Cartesian product Cn 3 Cn ; i.e., it is not
allowed to place more than one center of an object into a

Z(P) :5
1
n

? On
j51

uF(uj )u, (12)single grid node. The ordered pair [P, P9] [ Cn 3 Cn is
included into N, iff P and P9 differ at most in the position
of a single object and the center of this object is located

where P [ Cn.in neighbouring grid nodes. Two nodes of the grid are
considered to be neighbouring, if their coordinates differ DEFINITION 1. A placement P is said to be in an equilib-
only by one measure unit. For example, (x, y) and (x 2 1, rium state, iff Z(P) 5 0.
y 1 1) are neighbouring nodes. The definition of N in-

Because in our case the placements depend on a gridcludes [P, P] [ N. Because a grid node, except the nodes
structure, it cannot be expected, in general, that there existon the boundary, has eight neighbours, the number of P9
placements in an equilibrium state within Cn. Therefore,in pairs [P, P9] [ N is upper bounded by 8 ? n 1 1,
we consider the minimization of Z(P) on the grid structureif P consists of n units. The lower bound is uN u $ 12 ?
and defineÏn 2 3 for a dense square packing of all n objects.

3.2. The Objective Function
C opt

n :5 hQ : ;P(P [ Cn R Z(P) $ Z(Q))j.
For each disk uj , j 5 1, 2, ..., n, we define the set S(uj)

of surrounding disks that may cause a deformation of uj . As already mentioned in Section 1, the complexity of com-
The set S(uj) can be calculated by searching in a distance puting elements of C opt

n is expected to be exponentially in
smaller than d from the center of uj , and the particular n. Thus, stochastic algorithms are considered for finding
elements of S(uj ) can be calculated in time (d ? log K)O(1). packings close to elements from C opt

n .
Here we assume a binary representation length log x and
a polynomial complexity of arithmetic operations with re- 3.3. General Structure of Simulated Annealing
spect to log x. Let m denote the number of forces F(i)

First, we have to define how the transitions betweenapplied from different sides to uj , i 5 1, 2, ..., m (see Fig.
placements depend on the objective function Z. Given a2 for m 5 2). We suppose that the forces F(i) are ordered,
pair of placements [P, P9] [ N, we denote by G[P, P9]e.g., counterclockwise with respect to their appearance
the probability of generating P9 from P and by A[P, P9]at the border of uj. If R(ui , uj) , d, i.e., ui [ S(uj ),
the probability of accepting P9, once it has been generatedthe resulting deformation Dij . 0 is calculated by Dij :5
from P. Since we consider a single step of transitions,As ? (d 2 R(ui , uj )). Furthermore, the length l(uj, ui ) of the
the value of G[P, P9] depends on the set NP :5 hP9 : [P,intersection line is calculated from the centers (xi , yi ),
P9 ] [ N j. In most cases, a uniform probability with(xj , yj ), and the diameter d (see Fig. 4). With any pair
respect to P is taken by setting[Dij , l(ui , uj )], a force F(i) is associated in accordance with

the approximate formula (7). The forces F(i) assigned to a
unit are used for the calculation of the resultant force F(uj).
In a similar way the interactions with the boundary are G[P, P9] :5 5

1
uNPu

, if P9 [ NP,

0, otherwise.

(13)
considered, where Dj :5 (d/2 2 R(uj)) for a single inter-
section.

For the calculation of the resultant force F(uj) we have
Based on the above-mentioned upper and lower boundsto define the direction of the forces F(i). This direction is
for NP, one obtains for n objects and P9 [ NP,determined by the counterclockwise angle aij between the

x axis and the line connecting the centers of ui and uj .
The force F(uj ), which ‘‘tries to move’’ uj, is calculated 1

8 ? n 1 1
# G[P, P9] #

1
12 ? Ïn 2 3

. (14)
recursively, building pairwise the vector sum of two forces.
The complexity of these local computations depends on
m and d, but for m we have As for G[P, P9] there are different possibilities for the

choice of acceptance probabilities A[P, P9]. A straightfor-
ward definition related to the underlying analogy to ther-m #

2 ? f
2 ? arcsin (1/2 2 Dmax/d)

.
modynamical systems is

Therefore, the complexity of calculating a particular resul-
tant force F(uj ) j 5 1, ..., n, including the direction of F(uj ), A[P, P9] :5 H1, if Z(P9) 2 Z(P) # 0,

e2(Z(P9)2Z(P))/c, otherwise,
(15)

is upper bounded by (d ? log K)O(1).
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where c is a control parameter having the interpretation where
of a temperature in annealing procedures. Thus, with a
nonzero probability the computations will be continued F(c) 5 O

P[Cn

e2Z(P)/c (22)
with a configuration having a larger cost function compared
to the previous configuration. The actual decision, whether
or not P9 should be accepted for Z(P9) . Z(P), is per- is the partition function. That means, higher probabilities
formed in the following way: P9 is accepted, if are assigned to configurations P with a lower cost function

Z(P). For a changing control parameter c, i.e., if the ‘‘tem-
perature’’ is lowered, one can prove the convergence prop-e2(Z(P9)2Z(P))/c $ h, (16)
erty with respect to (13) and (15),

where h [ [0, 1] is a uniformly distributed random number.
lim
cR0

qc(P) 5 f(P),The value h is generated in each trial if Z(P9) . Z(P).
Finally, the probability of performing the transition be-
tween P and P9 is defined by where

PrhP R P9j 5 5
G[P, P9] ? A[P, P9], if P9 ? P,

1 2 O
Q?P

G[P, Q] ? A[P, Q]. (17) f(P) 5 HuC opt
n u21 if P [ C opt

n ,

0 elsewhere;

see [24, Eqs. (3.4), (3.5)]. Thus, in contrast to deterministicThe probability PrhP R P9j depends on the control param-
methods (see, e.g., [5–7, 17, 20]), we do not exclude a priorieter c.
the existence of several equilibrium states.Let aP(k) denote the probability of being in the configu-

Because the computation of Markov chains, in general,ration P after k steps performed for the same value of c.
is computationally intractable, one has to define some heu-The probability aP(k) can be calculated in accordance with
ristic rules bounding the number Lc of transition steps for
a fixed value of c :5 c(t). Furthermore, it is necessary to

aP(k) :5 O
Q

aQ(k 2 1) ? PrhQ R Pj. (18) determine how the parameter c(t) has to be changed.

3.4. Basic Parameters of Annealing Procedures
The recursive application of (18) defines a Markov chain

For implementations of simulated annealing algorithmsof probabilities aP(k), where P [ C and k 5 1, 2, .... If
one has to define the concrete values or the computationthe following conditions are satisfied for a given control
rules for the following parameters:parameter c . 0, for each P [ Cn the aP(k) converges to the

Boltzmann distribution qc(P) (see [24, Eqs. (3.12), (3.14)]): 1. Starting value c(0), i.e., the initial ‘‘temperature;’’

2. Length Lc of Markov chains for a fixed c;
;P1 , P2 'H0, H1 , ..., Hs [ Cn(H0 5 P1&Hs 5 P2):

G[Hk , Hk11 ](c) . 0, k 5 0, 1, ..., (s 2 1),
(19) 3. Cooling schedule, i.e., how to lower the ‘‘tempera-

ture’’ after Lc changes of configurations have been per-
formed (i.e., actual changes, not numbers of trials);

and 4. Stopping criterion c(tfin ), i.e., the final ‘‘temperature.’’

The value c(0) has to provide that virtually all transitions
P R P9 are accepted; i.e., in accordance with (15), one has

;c . 0 'Pc , Qc [ C :

A[Pc , Qc ] , 1 ` G[Pc , Qc ] . 0.
(20)

to ensure

Condition (19) provides the irreducibility of the Markov e2DZ/c(0) P 1. (23)
chain; condition (20) expresses the aperiodicity of aP(k).
If the generation and acceptance probabilities are defined While in general this condition cannot be verified effi-
as in (13) and (21), respectively, then conditions (19) and ciently, in our specific case of packing mixed rigid/nonrigid
(20) are satisfied and one obtains the Boltzmann distribu- objects we can provide relatively tight bounds for DZ and
tion as a result of aP(k) R qc(P) for k 5 0, 1, 2, ...: c(0) which imply (23); see Section 4.1.

Once the parameter c :5 c(t) has been chosen, the transi-
tions between configurations are determined by (14) andqc(P) 5

1
F(c)

? e2Z(P)/c, (21)
(15). The process remains in configuration P until a differ-
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ent configuration P9 has been accepted. However, the com- for a small real number d. As shown in [2, Eqs. (4.8), (4.9)],
both inequalities in (26) are satisfied if for all P [ Cn :putation of Markov processes is intractable due to the

length of chains. For example, the lower bound

c(t 1 1) . c(t)@F1 1
ln(1 1 d)

Zc(t)(P) 2 Z opt ? c(t)G. (27)Lc $ O(2 log «) ? (uCn u2 1 3 ? uCn u 1 3)

is given in [24, Eq. (5.2)] with Lc being the number of This inequality can be taken as the basis for a decrementing
computation steps necessary to approach an «-distance to rule, e.g., as described in Section 4.3. Another way is to
the stationary distribution qc , where one has to take into take a simple decrementing rule like c(t 1 1) :5 a ? c(t)
account that, in general, uCn u grows exponentially in n (see for a constant a smaller than but close to 1 (see Section 4.2).
(10) and (11)). There are numerous possibilities discussed The stopping criterion c(tfin ) can be derived, e.g., from
in the literature dealing with the number Lc of steps actu- the distance of the expected value of the cost function to
ally performed for a fixed value of c. We will relate the the optimal value (see [2, Eq. (4.15)]), i.e., from DZc(t) :5
number Lc to the following values: Ẑc(t) 2 Z opt, where Ẑc(t) :5 oP Z(P) ? qc(t)(P) is the expected

cost value at c(t). If we assume that Ẑc(t) is close to Z opt
1. The expected number Rc(P)

`

of trials that are neces-
for low temperatures, the value DZc(t) can be approximatedsary for leaving a given configuration P.
for small c(t) by simply using the partial derivative,

ˆ
2. The neighbourhood cardinality uNP u.

ˆ

ˆ

An upper bound for Rc(P)
`

can be derived in the following Zc(t) 2 Z opt

c(t) 2 0
5

DZc(t)

c(t)
P

­Zc(t)

­c(t)
, (28)way: By definition, the expectation Rc(P)

`

is expressed by

DZc(t) P c(t) ?
­Zc(t)

­c(t)
. (29)

Rc(P)
`

:5 Oy
l51

l ? PrhLeaving P during the lth trialj.

Let Ẑmax denote the expected cost function for large (infi-
The probability Prh? ? ?j is equal to the probability not to nite) values of c(t). Based on (29), the algorithm can be
leave P during the first (l 2 1) trials multiplied by the terminated at step t 1 1 if

ˆ
ˆ

probability to leave P in the lth trial. Based on (17), one
can show by straightforward calculations that

c(t) ?
­Zc

­c
uc5c(t) # « ? Zmax (30)

R̂c # emaxPmaxP9[NP
uZ(P9)2Z(P)u/c(t)

for a small positive number «. That means, the change
for arbitrary P [ Cn . We set of the cost function DZc(t) is very small compared to the

expected initial value of Z at c(0). For packing of mixed
DZmax :5 max

P
max
P9[NP

uZ(P9) 2 Z(P)u. rigid and flexible objects one can calculate relatively tight
approximations of ­Ẑc(t)/­c (see Section 4.1).

In the case that L :5 Lc is a constant and, therefore, not
Now, the two values considered for the actual length of chosen related to R̂c (see Section 4.2), one can define c(tfin )
Markov chains Lc are defined as in the following way: The upper bound (24) depends on

the actual temperature c(t). Hence, if the expected number
L(1)

c :5 eDZmax/c(t) $ R̂c , (24) of trials necessary to leave a given configuration is larger
than the actual value L for the length of Markov chains,

L(2) :5 l ? (8 ? n 1 1) 5 l ? (max
P[Cn

uNP u). (25) it is indeed the time to finish the procedure of simulated
annealing. That means, based on (24) one has in this case

In the second equation the length does not depend on the
L , eDzmax/c(tfin), (31)temperature, and l is a small integer or a rational number

l , 1 for large n and slow cooling schedules.
c(tfin ) ,

DZmax

ln L
. (32)In order to perform a ‘‘slow cooling process,’’ one should

guarantee only small changes for c,

This choice of the final temperature is of interest, in partic-
ular, if DZmax can be approximated, as in our case of pack-1

1 1 d
,

qc(t)(P)
qc(t11)(P)

, 1 1 d (26)
ing mixed rigid and flexible objects (see Section 4.1).
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4. TWO ANNEALING HEURISTICS Thus, the force can be calculated for infinitesimally small
deformation triangles. Let Fmax(p1) denote the maximum

We will employ the special structure of the underlying resultant force that ‘‘tries to move’’ a single unit in place-
configuration space and the properties of the objective ments with p1 as the maximum deformation depth.
function in order to get tight bounds for the parameters

LEMMA 1.of our annealing heuristics.

Fmax(p1) 5 max
1# j#n

uFj u # d ? G(p1 ). (34)4.1. Specification of Input Parameters

Our annealing heuristics are designed not only for regu-
lar (hexagonal) initial packings, but for the general case Now, the deformation angle in (33) is replaced in accor-
of random initial placements. Thus, the initial placements dance with
from Cn are restricted only by the parameter p1 $ Dmax ,
defining the maximum deformation for initial and interme-

sin
a1

2
5 2 ? Ïp1/d 2 (p1/d)2,diate arrangements during the computation of equilibrium

packings (of course, p1 , d/2).
The local forces F(uj ), including the direction aj , j 5 1,

and, therefore,..., n, and the objective function Z are computed as de-
scribed in Section 3.2. In order to find an upper bound for
local forces, we consider neighbouring disks acting on a a1

2
5 arc sin (2 ? Ïp1/d 2 (p1/d)2).

central disk uj within an angle of f, because for angles
larger than f the forces would compensate each other at
least in part. The maximum resultant vector sum in the Hence, for S(p1 , d) :5 2 ? Ïp1/d 2 (p1/d)2 and, based on
perpendicular direction is achieved, if the force corre- (33), the upper bound from Lemma 1 can be expressed by
sponding to the maximum deformation p1 is acting continu-
ously on the arc facing the angle f. We consider the case

Fmax :5
p1 ? S21(p1 , d)

C1 2 C2 ? (arc sin S(p1 , d) 1 S(p1 , d))
. (35)that two rigid materials are deformed, i.e., the forces calcu-

lated from (7) are doubled in order to determine the resul-
tant force from the particular deformation (see Section

The value Fmax can be calculated directly from the input2.1). We denote
parameters of a given packing problem and is applicable
to the criterion formulated in (30).

In a similar way we derive an upper bound forG(p1) :5
2

C1 2 C2 ? (a1/2 1 sin(a1/2))
?

p1

s(p1)
, (33)

DZmax :5 max
[P,P9][N

uZ(P9) 2 Z(P)u, (36)
and recall that G(p1 ) ? l(u, v) represents the normalized
force (see (7)). Here, a1 is the fixed deformation angle

which is an important parameter defining the run-time ofcorresponding to the maximum deformation p1 . We use
simulated annealing procedures (see (23), (24), and (32)).the fact that for ds 5 dsa 5 l(u, v) the value ds is related
Consider a disk u in a given position and the force F(u)to an infinitesimal deformation angle da by the equations
assigned to u, i.e., ‘‘trying to move’’ u. This disk u is the
only unit that is moved during the transition P R P9. In

ds 5 2 ?
d
2

? sin
da
2

5 2 ?
d
2

?
sin(da/2)

da/2
?

da
2

5
d
2

? da, order to simplify notations, we assume Fu to be oriented
in the opposite direction of the move; otherwise it would
be necessary to take the projection onto the move direc-

because limxR0 ((sin x)/x) 5 1. Thus, if we assume that tion, but this projection is smaller than uF(u)u. The maxi-
G(p1 ) ? ds is acting continuously on the arc between the mum distance that u can be moved is Ï2 ? w, along the
angle 0 and f, we obtain grid diagonal. The maximum increase of the ‘‘moving’’

force will appear, if continuously the same maximum in-
crease DF(u)[Ï2 ? w] of the force is assumed within anEf

0
G(p1 ) ? dsa 5 Ef

0
G(p1 ) ?

d
2

sin a da
angle from 2f/2 to 1f/2. This is a first component that
enlarges uF(u)u. Additionally, the ‘‘resistance’’ of disks from

5
d
2

? G(p1) ? Ef

0
sin a da 5

d
2

? G(p1 ) ? (2cos a uf0 ) the opposite direction may decrease, but also only by a
value calculated from DF(u)[Ï2 ? w] for the entire angle
f. Thus, given a deformation depth D # p1 2 Ï2 ? w, an5 d ? G(p1).
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upper bound for the maximum increase (decrease) DF(u) The values Fmax and Zmax can be calculated from (35) and
(39), by using only input parameters of the given packing[Ï2 ? w] related to da can be expressed by
problem and an appropriate approximation of m(p1).

Finally, we analyze the convergence of annealing proce-
DF(u)[Ï2 ? w] 5 G(D 1 Ï2 ? w) ? dsa 2 G(D) ? dsa , (37)

dures computing equilibrium packings of mixed rigid and
flexible objects, where we suppose p1 # d/2 2 w, because

where G is calculated as in (33) for p1 . It was already for this bound of deformation depth none of the combina-
mentioned in Section 2.2 that the second derivative of tions of placed disks is excluded; i.e., we ensure that any
G 5 G(a) is positive for a [ (0, f). That means, the value equilibrium packing can be approached. In order to show
DFu(Ï2 ? w) is upper bounded by DF(p1) :5 (G(p1) 2 the convergence, we apply the sufficient conditions given
G(p1 2 Ï2 ? w)) ? dsa . Let DFmax (p1) denote the maximum in (19) and (20). For two configurations P1 and P2 one can
change of a local force assigned to a single unit u that may define intermediate configurations Hk , k 5 0, 1, ..., s, such
occur during the transition P R P9. If we again consider that H0 5 P1 , Hs 5 P2 , and Hk , Hk11 differ only by the
projections DF(p1) ? sin a onto the direction of the move placement of a single unit. This is possible because we
and apply the same calculations as for (34), we obtain consider identical objects and the whole set C with, in

fact, no restrictions on the deformation depth. As already
mentioned in (14), the inequality G[Hk , Hk11 ] $ 1/(8 ?DFmax(p1) # 2 ? d ? (G(p1) 2 G(p1 2 Ï2 ? w)). (38)
n 1 1) . 0 is valid for all k 5 0, 1, ..., (s 2 1). Thus,
condition (19) is satisfied. If for a given n , K and all pairs

Up to now we have considered only the force assigned to [P, P9] [ N it holds that A[P, P9] 5 1 and A[P9, P] 5
the disk u that is moved during the transition P R P9. But 1, then all placements represent the same value of Z(P),
the objective function is the average value of all local i.e., the value Z opt. Hence, we assume that the value of
forces. Although all disks, except u, remain unchanged in n , K makes it possible to find two neighbouring place-
their position during P R P9, the forces assigned to the ments P, P9 such that Z(P) ? Z(P9). Because G[P, P9] $
units may change for units in contact with u in P and/or 1/(8 ? n 1 1) . 0 and, e.g., A[P, P9] , 1, the third condition
in P9. Let m(p1) denote the maximum number of disks (20) is also satisfied for numbers of elements n # K 2 k0
that can be placed along the border of a single disk in that are not too close to K. Therefore, we have:
placements restricted by the maximum deformation depth

THEOREM 1. The stochastic simulated annealing pro-p1 . Since we are interested in an upper bound for
cedure minimizing Z for placements of mixed rigid andDZmax(p1), we consider the case that, during the move
flexible objects, which is based on (13) and (15), tends to theP R P9, the force increases by DFmax(p1) for 1 1 m(p1)/
global minimum for c R 0.2 disks (located in the opposite direction of F(u), including

u). In the direction of F(u), the forces could decrease, but Here we suppose virtually that stationary distributions
these changes are not taken into account for the upper of Markov chains are calculated for any c(t). In practical
bound (in a symmetrical case, the remaining difference applications, however, the computation of Markov pro-
would be DF(u)). From the defining equations (12) and cesses is interrupted after a defined number of steps,
(38) we obtain, finally, an upper bound for the maximum bounded, e.g., by the number given in (41) or by maxP uNPu.
difference of forces DZmax(p1):

4.2. The First Cooling Schedule

DZmax(p1) :5 d ?
m 1 2

n
? (G(p1) 2 G(p1 2 Ï2 ? w)). (39) Based on (23) and (39), the starting value c(0) is de-

fined from

Since our objective function represents the average force
e2DZmax(p1)/c(0) 5 1 2 p2 , (42)assigned to a single disk, the value Fmax is also an upper

bound for Z. Thus, we obtain
c(0) 5 2

DZmax(p1 )
ln(1 2 p2)

, (43)
LEMMA 2. The following upper bounds are valid for

arbitrary P [ Cn satisfying the restriction provided by the
parameter p1 : where p2 is a small positive value and the second parameter

of our approach.
The decrementing rule is given by the simple relation

Zmax(P) # Fmax(p1); (40)

c(t 1 1) :5 p3 ? c(t), (44)Rc(t)(P)
`

, eDZmax(p1)/c(t). (41)
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where p3 is close to but smaller than one. The stopping If the length of Markov chains is determined by L, the
algorithm has to perform L ? tfin accepted moves beforecriterion is derived from
the algorithm halts because of (45).

THEOREM 2. For L :5 l ? (8 ? n 1 1) and the firstc(tfin) #
DZmax

ln[l ? (8 ? n 1 1)]
#

DZmax(p1 )
ln[l ? (8 ? n 1 1)]

. (45)
cooling schedule the expected run-time of computing near-
equilibrium packings of n mixed rigid and flexible objectsThis criterion is motivated by the value of R̂c (see (32)),
is upper bounded bysince for this value of c(tfin) the expected number of trials

necessary to leave P is larger than L 5 l ? (8 ? n 1 1), the
number that is used for interrupting the computation of TI ,P

l ? (8 ? n 1 1)
ln p3

? ln S2
ln(1 2 p2 )

ln[l ? (8 ? n 1 1)]D ? Tloc ? x.
Markov chains for a fixed temperature c(t).

Let x̂(c) denote the expected ratio of the entire number
of processed trials and Lc at temperature c. Since tfin de- An upper bound for the number of grid nodes K is given
notes the number of cooling steps, we can define the aver- in (11), and we can substitute ln K by ln n 1 d 1 O(1) 5
age value x :5 1/tfin ? oc x̂c. Hence, the number of processed O(ln n). Thus, if we assume L 5 O(n) and a quadratic
trials from c(0) to c(tfin ) is for a constant length L of complexity for the basic arithmetic operations in local com-
Markov chains given by x ? L ? tfin . Furthermore, let Tloc putations, i.e., Tloc 5 O(ln2 K), we obtain an expected run-
denote an upper bound for the time needed to perform time bounded by O(n ? ln2 n).

1. the calculation of local forces (see formula (7) and 4.3. The Second Cooling Schedule
Section 3.2);

The initial temperature is chosen as defined in the first2. the updating of the objective function (also possible
mode by Eq. (43). The control parameter c(t) is decre-by local computations);
mented by the rule3. the local computations and decisions in accordance

with (15) and (16); and
c(t 1 1) :5

c(t)
1 1 w(d) ? c(t)

. (46)4. the updating of cooling parameters (if necessary in
the actual step).

The calculation of local forces requires the information The function w(d) is derived from (27). The right side
enlarges in (27), if Z opt is omitted and Zc(t) is replaced inabout surrounding units. The corresponding time is

bounded by O(m(p1 )). The updating of the objective func- our case by the upper bound 2 ? G(p1 ). Hence, the function
w(d) is defined bytion can be performed by modifying only the forces for u

and S(u), where u denotes the moved disk. The disk u is
chosen randomly, with direct access to the address con-

w(d) :5
ln(1 1 d)
Fmax(p1)

, 1. (47)taining the information about u. Hence, the time Tloc can
be upper bounded by O(m(p1) ? (d ? ln K)O(1)).

If the cooling schedule is chosen in accordance with We employ (30) for the definition of c(tfin ). In our case,
(43), (44), and (45), the number of steps tfin , reducing the Ẑmax can be upper bounded by
parameter c(t) can be calculated from

lim
cRy

Ẑc 5 Ẑmax 5
1

uCnu
? O

P
Z(P) , Fmax(p1).(p3 )tfin ? c(0) 5 c(tfin ), (48)

or
This follows directly from the definition of Ẑc 5 oP Z(P) ?
qc(P), the values of qc for c R y (see (21) and (22)), and
the upper bound (40). Furthermore, we make use of the(p3)tfin ? S2

DZmax

ln(1 2 p2)D5
DZmax

ln[l ? (8 ? n 1 1)]
.

approximation

We obtain finally
Ẑc ,P

ln uCnu
c(0)

? c2 1 c. (49)

tfin # L 1
ln p3

? ln S2
ln(1 2 p2 )

ln[l ? (8 ? n 1 1)]DJ.
The approximation can be derived from the analysis of
the entropy function Ec :5 2oP qc(P) ? ln qc(P). The value
DZc from (29) is in our case equal to Ẑc because Z opt 5That means, the number of cooling steps does not depend

on the objective function. 0 (for simplicity of notation we assume that equilibrium
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packings are achieved on the grid structure L 3 H; other- THEOREM 3. For a bounded length L of Markov chains
and the second cooling mode the expected run-time of com-wise the objective function has to be changed to Z(P) 2

Zmin , where Zmin is the minimal value of the average force puting equilibrium placements for n mixed rigid and flexible
objects can be upper bounded bythat can be achieved on the underlying grid). Thus, from

(30), (48), (49)), and DZc 5 Ẑc we obtain the condition

TII ,P L ? !2ln(1 2 p2)
« ? ln2(1 1 d)

? !b ? Fmax

DZmax ? Tloc ? x.ln uCnu
c(0)

? c2 1 c , « ? Fmax. (50)

The value ln uCnu is replaced by the upper bound from (10): The value b can be expressed by b 5 O(n ? ln K) (see
(51)). Thus, we obtain the time bound TII ,P O(n ? Ïn ?

Ïln n ? ln2 n) 5 O(n3/2 ? ln5/2 n).ln uCn u , n ? ln K 1 n ? ln S1 2
n 2 1

2
? aD.

In the second cooling schedule the run-time is longer,
compared to the bound given in Theorem 2, but one has

Here, the parameter a depends on the deformation depth a better control of the final outcome, because the objective
p1 (instead of Dmax ), and we use the notation function is explicitly used in this cooling schedule (see

(52)). However, the first cooling schedule also provides
packings with a relatively small local force for all disks.b :5 n ? Sln K 1 ln S1 2

n 2 1
2

? aDD. (51)
The paper [3] deals with the problem why, indeed, rela-

tively fast randomized algorithmic solutions computing
Now, we obtain from (50) the stopping criterion packings close to equilibrium states can be expected for

packings of flexible objects. The explanation is based on
c(t) , Ïc2(0)/4 ? b2 1 « ? c(0)/b ? Fmax 2

c(0)
2 ? b

. (52) a polynomial upper bound for the number of cooling steps
that are sufficient for «-approximations of equilibrium
states. In [3] we have shown that after na steps of anSince c(0), Fmax, and b can be calculated from input coeffi-
appropriate annealing procedure the probability to becients of the given packing problem, the bound (52) can
in an equilibrium state is at least 1 2 «, or in other words,be directly used for parameter settings in annealing proce-
oHÓC

opt
n

aH (k) , «. The exponent a is defined by the inversedures.
value w21 of the grid step size, the diameter d (which is aBased on (30) and (46), we can derive an upper bound for
multiple of w), and material constants, i.e., if these valuesthe expected computation time. One can show by induction
are fixed, the exponent a is a constant and the number nthat (46) implies
increases as the placement area increases. Since in our
definition rigid disks differ from flexible disks only by thec(t) 5

c(0)
1 1 t ? w(d) ? c(0)

for t 5 0, 1, .... (53)
order of magnitude of the material constants C1 and C2 ,
the result on polynomial time convergence in distribution

If tfin is defined as the value of t when (52) is satisfied for can be extended immediately to the case of mixed rigid
the first time, together with (53) one obtains and flexible objects.

c(0)
1 1 tfin ? w(d) ? c(0) 5. SIMULATION RESULTS

Our approach is based on the assumption that equilib-
,

1
2 ? b

? (Ïc2(0) 1 4 ? « ? c(0) ? b ? Fmax 2 c(0)) rium states of composite materials do not correspond to
regular packings of circular shaped discs, i.e., that computa-
tions of relative displacements under external forces should#

c(0)
1 1 (tfin 2 1) ? w(d) ? c(0)

.
start with equilibrium packings of deformed particles.
Therefore, we suppose an initial deformation of disksThe second inequality is solved with respect to tfin , and
within the regular hexagonal placement, which is taken asadditionally, (43) and (47) are applied. Hence, one obtains
the starting configuration for computing a near-equilibriumthe upper bound
packing without an external impact. The outcome, i.e.,
the near-equilibrium packing is then used as the initialtfin # Ï2ln(1 2 p2 ) ? b ? Fmax/« ? DZmax ? ln2(1 1 d). (54)
placement for calculating relative displacements under ex-
ternal forces, where at both stages we suggest the applica-The upper bound is related to the approximation (49).

Finally, we have: tion of stochastic simulations.
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TABLE IIWe have implemented both stochastic annealing proce-
dures from Section 4.2 and Section 4.3, respectively, on a

Number of disks 325 500 1000 1500parallel 20-processor Sun SPARC2000. The parallel imple-
mentation is a straightforward adaptation of the sequential Average number of 16.25 25 50 75
procedures. The rectangular placement area is subdivided disks per processor
in a regular way according to the number of available First cooling schedule
processors. The processors act asynchronously, and a par- Run-time parallel (s) 1101 1153 2573 4057

Run-time serial (s) 16930 18491 45901 72451ticular unit is assigned to a certain processor depending
Speedup 15.4 16.1 17.8 17.9on the actual position within the placement area, i.e., the

assignment may change when a unit moves from one part Second cooling schedule
Run-time parallel (s) 26549 28068 113203 —of the subdivision to another.

With respect to the heuristics, described in Section 4,
two modifications were introduced: An adaptive grid size

wmin :5 1025 ? wmax ; r was chosen equal to 0.3. All inputand nonuniform distributions of the generation probabili-
parameters were calculated in accordance with (35), (39),ties. In general, one can expect that in equilibrium states
and (43) for the ‘‘rigid’’ material. The maximum deforma-centers of disks are not located in grid nodes. In order to
tion depth p1 depends on the number n of disks (see Sectionimprove the final results calculated on the grid structure,
5.1, ..., Section 5.3), but the remaining parameters are ap-an adaptive grid size was introduced which reduces the grid
proximately the same, i.e., p2 P 0.1 and p3 P 0.9 for thesize during the final period of computation. We followed a
first cooling schedule, and d P 0.1, « P 1024 (see (50)) forsimple procedure: One has to choose the starting grid size
the second cooling schedule.wmax , the final grid size wmin , the reduction step r, and a

parameter s which defines the final portion of the computa-
5.1. General Performance Analysis

tion time, where the grid size is reduced. After L ? (1 2
s) ? tfin  accepted steps of the annealing algorithm, the grid First, we present the run-time analysis for serial and

parallel computations. Since relatively large deformationssize will be lowered if
p1 and random initial placements have been chosen (in
order to test the capability to compute near-equilibrium
states for extreme cases), the material was restricted to onlyKL ? s ? tfin ?

r
wmax 2 wmin 1 1H one elastic type (low-density polyethylenes, see Table I).

Table II shows the results from experiments on different
numbers of placed objects. The diameter ranges from 0.5accepted moves have been performed. Furthermore, the
mm (325 disks) to 0.1 mm (1500 disks). In all parallelgeneration probabilities are modified in the following way:
experiments the number p of involved processors was equalFor any of the n units, the direction ares of Fres(u) is taken,
to p 5 20. For the first cooling schedule with an expectedand among the eight surrounding grid nodes of the center
serial run-time of n ? ln2 n ? x the parallel computationof a unit the node k(ares) located in the direction of ares
time is compared to single processor computations.is chosen, according to a subdivision into sectors with an

The difference of the speedup to the number of proces-angle f/4. To placements P9, representing the move to a
sors can be explained mainly by the amount of time thatgrid node kj(ares), j 5 1, 2, ..., n, a higher probability
is needed for the memory management (by the operatingis assigned,
system) and the handling of units assigned to more than
a single subdivision. For the second cooling schedule serial
computations were not performed for larger numbers of
units due to the expected run-time of n3/2 ? ln5/2 n ? x.

G[P, P9] :5 5
1 2 r

n
P9 5̂ kj (ares);

r

uNP u 2 n
, otherwise,

The comparison of run-times has to take into account
the average number m of units from the neighbourhood
of the particular disk that is considered during a single
transition P R P9. The number m depends on p1 (maximum
deformation depth) and ranges in our case from 24 (325where j 5 1, 2, ..., n and r . 0. Since G[P, P9] . 0 is

still satisfied for any P9 [ NP , the general convergence disks) to 6 (1500 disks).
The example from Fig. 5 and Fig. 6 shows that indeedproperties (see Theorem 1) remain unchanged.

The length of Markov chains was 10 ? (8 ? n 1 1) for a regular, hexagonal-like packing is computed for the case
of only a single material. The average residue force isthe first cooling schedule and 8 ? n 1 1 for the second

cooling schedule. The initial grid width wmax in simulations relatively small, especially, if we compare it to the average
force from the initial random placement.of Section 5.2 and Section 5.3 was 1024 mm, and we used
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FIG. 6. Final packing: final sum of forces, 0.99 N; average residualFIG. 5. Random initial placement: number of disks, 900 [900, 0];
diameter of disks, 0.15 mm; maximum deformation depth p1 , 0.06 mm; force per disk, 0.0011 N; run-time (second schedule), 19 h 17 min 41 s

(x P 1.1).starting sum of forces, 1.24 3 104 N.

5.2. Relative Displacements to Regular Initial Packings is approximately 1012 in [20], and the ratio of rigid and
nonrigid bond-stretching force constants is 107 in [17].

We consider simulation experiments mainly for two pa-Given two different materials, we consider the ratio
k :5 uFIu/uFIIu of forces that are necessary to achieve the rameters: The force ratio k and the maximum deformation

depth p1 5 Dmax. The constants Cel
1/2 of the ‘‘soft’’ materialsame deformation depth D, where uFIu and uFIIu are calcu-

lated from (7) and D is in a fixed, small relation to the are taken from the first material of Table I, and we consider
two values for k: 102 and 105. The constants of the seconddiameter d. The force uFIu corresponds to the rigid material.

For example, if we take D/d 5 1/100 and the first two (‘‘rigid’’) material are simply from the division of Cel
1/2 by

k. The value k 5 102 does not correspond to our definitionmaterials from Table I, we obtain k P 102. As already
mentioned in Section 1, the ratio of similar force constants of rigid/nonrigid materials (see Section 2.2), but we try to

FIG. 7. Relative displacements: k 5 102.
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The simulation results show that Dav increases only slightly
if the maximum deformation depth changes from pa

1 to
pb

1 5 2 ? pa
1 (see Fig. 7 and Fig. 10).

5.3. Relative Displacements under External Forces

As a consequence of our simulations for small initial
deformations and regular initial placements, we propose
the following approach: First, by using the fast cooling
schedule of Section 4.1, an equilibrium packing is calcu-
lated from a hexagonal initial placement. The average dis-
placement is taken into account for the second step, where
the impact of external forces is analyzed. The external
force is simulated by lowering the upper boundary of the
placement area. This corresponds to a permanent force,
applied perpendicular to the upper boundary.

In Table III and Table IV we present the outcome of
simulations for an initial deformation of 2 3 1024 mm, i.e.,
P0.1% of the disk diameter 0.1028 mm. The constants
Cel

1/2 are from the first material of Table I and k was set
to 105. The relation [371, 697] corresponds to the percola-
tion threshold pc 5 1 2 2 ? sin(f/18).

The result from the first run of Table III was taken asFIG. 8. Initial hexagonal packing: number of disks, 449 [156, 293];
initial deformation Dinit, 0.0006 mm (d 5 0.1602 mm); starting sum of the input for a second run, where a permanent external
forces, 2.88 3 105 N. force was simulated by lowering the upper boundary. The

height was decreased by 0.0002 mm, i.e., to disks u located

demonstrate that even in this case a measurable average
displacement can be observed (Fig. 7).

By [A, B] we denote A elastic disks and B rigid disks.
Since we consider average displacements from hexagonal
initial placements, the value of B/(A 1 B) was chosen
close to the percolation threshold pc 5 1 2 2 ? sin(f/18)
of hexagonal networks (see [33]). Thus, for the case of 449
disks the corresponding number of ‘‘rigid’’ disks is 293
(or 294).

For an increasing diameter from 0.1592 mm up to 0.1602
mm we performed simulations with the first cooling sched-
ule and two values of the parameter p1: First, the maximum
deformation pa

1 was taken 10 times larger than the deforma-
tion Dinit of the initial regular placement, and, second,
pb

1 5 20 ? Dinit was chosen. In the initial hexagonal packing
of Fig. 8, the deformation Dinit is equal to 0.0006 mm, i.e.,
only P0.4% of the diameter 0.1602 mm. Except for the
increasing diameter, all other settings are identical, and
several runs were performed for a given diameter, but the
outcome was nearly the same in all trials (see Fig. 8 and
Fig. 9 for k 5 102 and Dinit 5 6 3 1024 mm).

As seen from Fig. 7, the average displacement Dav grows
up to P5% of the radius even for k P 102 and small values

FIG. 9. Final packing: maximum allowable deformation p1 , 0.012 mm;of Dinit. maximum sum of forces, 3.26 3 105 N; final sum of forces, 3.06 3 102

The simulations for k 5 105 were performed for the N; (P0.1% of max. force); average residual force per disk, 0.68 N; average
same range of the diameter and the same two values of displacement of disks, 0.0039 mm (P5% radius); run-time (first schedule),

2 h 37 min 06 s, (x P 2.07).pa/b
1 . We obtain Dav P 9% of the radius for pb

1 5 0.012 mm.
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FIG. 10. Relative displacements: k 5 105.

at the upper boundary a force F(u) was assigned, where i.e., these placements are very close to equilibrium states.
For both cooling schedules the expected run-time has in-uF(u)u is calculated from (7) for D 5 0.0002 mm 1 displace-

ment (depending on the actual position of u and to which deed been achieved by our implementation, and the pro-
gram runs relatively fast even for a large number of units.material u belongs). The second run was performed by the

parallel implementation of the second cooling schedule. Although in the second cooling schedule the number of
cooling steps does not depend on the objective function,The starting force results from the average external force

per disk (31 disks are placed in one row at the upper our computational experiments have produced placements
with a relatively small local force for any unit; i.e., theseboundary) and the residual force of the first run. Since p1

is relatively small, the value of x is significantly larger placements are also close to equilibrium states. The results
from the parallel implementation show that even for acompared to Fig. 9, and this affects the run-time as already

shown in Theorem 3. relatively large number of units the program runs very fast,
and compared to the sequential case, the speedup is close to
the maximum possible acceleration. Both heuristics were6. CONCLUDING REMARKS
applied to stochastic simulations of composite packings,

We have designed two stochastic procedures computing especially to computations of equilibrium packings from
equilibrium packings of two-dimensional rigid and flexible regular initial placements. Furthermore, we performed
objects. The algorithms are relatively independent of the computational experiments where the impact of external
particular physical modeling of interactions between ob- forces is simulated by a decrease of the placement area.
jects; therefore, these heuristics can be applied to various Relatively large average displacements of equilibrium
physical problems, e.g., arising from the analysis of granu- packings from regular initial placements have been ob-
lar composites in material sciences. In the literature, two- tained, even for small initial deformations. For 449 disks
dimensional granular composites are usually represented and a ratio Dinit/d P 0.004 an average displacement of P5%
by networks of disks, where mainly two types of disks are
considered, namely, deformable and rigid ones. While in
existing approaches large systems of equations have to be TABLE III
solved in order to compute successive configurations, our

Number of disks 1068 [371, 697]algorithms are based on stochastic decisions about local
Diameter of disks 0.1028 mmchanges in configurations. The general principle is derived
Initial deformation Dinit 0.0001 mm

from simulated annealing, and the expected run-time for Max. allowable deformation p1 0.001 mm
the two types of cooling schedules can be upper bounded Maximum sum of forces 1.74 3 108 N

Final sum of forces 2.21 3 106 Nby n3/2 ? ln5/2 n and n ? ln2 n, respectively. In the first cooling
(P1.27% of max. force)schedule the run-time is longer, but because the objective

Average residual force per disk 2.07 3 103 Nfunction is explicitly used in the cooling schedule, one has a
Run-time (first schedule) 4 h 35 min 11 s (x P 1.82)

better control of the final outcome, resulting in placements Average displacement (first step) 0.0011 mm (P2% radius)
with extremely small values of local forces for any unit;
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10. R. J. Bathurst and L. Rothenburg, Micromechanical aspects of iso-TABLE IV
tropic granular assemblies with linear contact interactions, J. Appl.
Mech. 55, 17 (1988).Number of disks 1068 [371, 697]

Diameter of disks 0.1028 mm 11. D. J. Bergmann, Elastic moduli near percolation: Universal ratio and
Max. allowable deformation p1 0.005 mm critical exponent, Phys. Rev. B 31, 1696 (1985).
Starting sum of forces 7.14 3 106 N 12. D. J. Bergmann, Elastic moduli near percolation in a two-dimensional
Maximum sum of forces 1.56 3 108 N random network of rigid and nonrigid bonds, Phys. Rev. B 33,
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13. D. J. Bergmann and E. Duering, Universal Poisson’s ratio in a two-Average residual force per disk 7.97 3 102 N

dimensional random network of rigid and nonrigid bonds, Phys. Rev.Run-time (second schedule) 37 h 10 min 13 s ((x) P 2.42)
B 34, 8199 (1986).Force simulation depth 0.0002 mm
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niques, edited by S. Azencott (Wiley, New York, 1992), p. 25.
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